Mechanical and electronic injection

Many configurations of fuel injection have been used over the past century (1900–2000).
Most present day (2008) diesel engines make use of a camshaft, rotating at half crankshaft speed, lifted mechanical single plunger high pressure fuel pump driven by the engine crankshaft. For each cylinder, its plunger measures the amount of fuel and determines the timing of each injection. These engines use injectors that are very precise spring-loaded valves that open and close at a specific fuel pressure. For each cylinder a plunger pump is connected with an injector with a high pressure fuel line. Fuel volume for each single combustion is controlled by a slanted groove in the plunger which rotates only a few degrees releasing the pressure and is controlled by a mechanical governor, consisting of weights rotating at engine speed constrained by springs and a lever. The injectors are held open by the fuel pressure. On high speed engines the plunger pumps are together in one unit. Each fuel line should have the same length to obtain the same pressure delay.
A cheaper configuration on high speed engines with fewer than six cylinders is to use an axial-piston distributor pump, consisting of one rotating pump plunger delivering fuel to a valve and line for each cylinder (functionally analogous to points and distributor cap on an Otto engine). This contrasts with the more modern method of having a single fuel pump which supplies fuel constantly at high pressure with a common rail (single fuel line common) to each injector. Each injector has a solenoid operated by an electronic control unit, resulting in more accurate control of injector opening times that depend on other control conditions, such as engine speed and loading, and providing better engine performance and fuel economy. This design is also mechanically simpler than the combined pump and valve design, making it generally more reliable, and less noisy, than its mechanical counterpart.
Both mechanical and electronic injection systems can be used in either direct or indirect injection configurations.
Older diesel engines with mechanical injection pumps could be inadvertently run in reverse, albeit very inefficiently, as witnessed by massive amounts of soot being ejected from the air intake. This was often a consequence of push starting a vehicle using the wrong gear. Large ship diesels can run either way.

Indirect injection
An indirect injection diesel engine delivers fuel into a chamber off the combustion chamber, called a pre-chamber or ante-chamber, where combustion begins and then spreads into the main combustion chamber, assisted by turbulence created in the chamber. This system allows for a smoother, quieter running engine, and because combustion is assisted by turbulence, injector pressures can be lower, about 100 bar (10 MPa; 1,500 psi), using a single orifice tapered jet injector. Mechanical injection systems allowed high-speed running suitable for road vehicles (typically up to speeds of around 4,000 rpm). The pre-chamber had the disadvantage of increasing heat loss to the engine's cooling system, and restricting the combustion burn, which reduced the efficiency by 5%–10%. Indirect injection engines were used in small-capacity, high-speed diesel engines in automotive, marine and construction uses from the 1950s, until direct injection technology advanced in the 1980s. Indirect injection engines are cheaper to build and it is easier to produce smooth, quiet-running vehicles with a simple mechanical system. In road-going vehicles most prefer the greater efficiency and better controlled emission levels of direct injection.

Direct injection
Modern diesel engines make use of one of the following direct injection methods:
Direct injection injectors are mounted in the top of the combustion chamber. The problem with these vehicles was the harsh noise that they made. Fuel consumption was about 15 to 20 percent lower than indirect injection diesels, which for some buyers was enough to compensate for the extra noise.
This type of engine was transformed by electronic control of the injection pump, pioneered by the FIAT in 1988 (Croma). The injection pressure was still only around 300 bar (30 MPa; 4,400 psi), but the injection timing, fuel quantity, EGR and turbo boost were all electronically controlled. This gave more precise control of these parameters which made refinement more acceptable and lower emissions.

Unit direct injection
Unit direct injection also injects fuel directly into the cylinder of the engine. In this system the injector and the pump are combined into one unit positioned over each cylinder controlled by the camshaft. Each cylinder has its own unit eliminating the high pressure fuel lines, achieving a more consistent injection. This type of injection system, also developed by Bosch, is used by Volkswagen AG in cars (where it is called a Pumpe-Düse-System—literally pump-nozzle system) and by Mercedes Benz ("PLD") and most major diesel engine manufacturers in large commercial engines (CAT, Cummins, Detroit Diesel, Volvo). With recent advancements, the pump pressure has been raised to 2,400 bar (240 MPa; 35,000 psi), allowing injection parameters similar to common rail systems.

Common rail direct injection
In common rail systems, the separate pulsing high pressure fuel line to each cylinder injector is also eliminated. Instead, a high-pressure pump pressurizes fuel at up to 2,000 bar (200 MPa; 29,000 psi), in a "common rail". The common rail is a tube that supplies each computer-controlled injector containing a precision-machined nozzle and a plunger driven by a solenoid or piezoelectric actuator.