Engine speeds

Within the diesel engine industry, engines are often categorized by their rotational speeds into three unofficial groups:
- High speed engines,
- Medium speed engines, and
- Slow speed engines
High and medium speed engines are predominantly four stroke engines. Medium speed engines are physically larger than high speed engines and can burn lower grade (slower burning) fuel than high speed engines. Slow speed engines are predominantly large two stroke crosshead engines, hence very different from high and medium speed engines. Due to the lower rotational speed of slow and medium speed engines, there is more time for combustion during the power stroke of the cycle, and these engine are capable of utilising lower fuel grades (slower burning) fuels than high speed engines.

High-speed engines
High-speed (approximately 1,000 rpm and greater) engines are used to power trucks (lorries), buses, tractors, cars, yachts, compressors, pumps and small electrical generators. As of 2008, most high-speed engines have indirect injection. Many modern engines, particularly in on-highway applications, have common rail direct injection, which is not as reliable due to required electric power but is cleaner burning.

Medium-speed engines
Medium speed engines are used in large electrical generators, ship propulsion and mechanical drive applications such as large compressors or pumps. Medium speed diesel engines operate on either diesel fuel or heavy fuel oil by direct injection in the same manner as low speed engines.
Engines used in electrical generators run at approximately 300 to 1000 rpm and are optimized to run at a set synchronous speed depending on the generation frequency (50 or 60 hertz) and provide a rapid response to load changes. Typical synchronous speeds for modern medium speed engines are 500/514 rpm (50/60 Hz), 600 rpm (both 50 and 60 Hz), 720/750 rpm, and 900/1000 rpm.
As of 2009, the largest medium speed engines in current production have outputs up to approximately 20 MW (27,000 hp). and are supplied by companies like MAN B&W, Wartsila, and Rolls-Royce (who acquired Ulstein Bergen Diesel in 1999). Most medium speed engines produced are four-stroke machines, however there are some two-stroke medium speed engines such as by EMD (Electro-Motive Diesel), and the Fairbanks Morse OP (Opposed-piston engine) type.
Typical cylinder bore size for medium speed engines ranges from 20 cm to 50 cm, and engine configurations typically are offered ranging from in-line 4 cylinder units to V configuration 20 cylinder units. Most larger medium speed engines are started with compressed air direct on pistons, using an air distributor, as opposed to a pneumatic starting motor acting on the flywheel, which tends to be used for smaller engines. There is no definitive engine size cut-off point for this.
It should also be noted that most major manufacturers of medium speed engines make natural gas fueled versions of their diesel engines, which in fact operate on the Otto cycle, and require spark ignition, typically provided with a spark plug. There are also dual (diesel/natural gas/coal gas) fuel versions of medium and low speed diesel engines using a lean fuel air mixture and a small injection of diesel fuel (so called "pilot fuel") for ignition. In case of a gas supply failure or maximum power demand these engines will instantly switch back to full diesel fuel operation.

Low-speed engines
Also known as slow-speed, or traditionally oil engines, the largest diesel engines are primarily used to power ships, although there are a few land-based power generation units as well. These extremely large two-stroke engines have power outputs up to approximately 85 MW (114,000 hp), operate in the range from approximately 60 to 200 rpm and are up to 15 m (49 ft) tall, and can weigh over 2,000 short tons (1,800 t). They typically use direct injection running on cheap low-grade heavy fuel, also known as Bunker C fuel, which requires heating in the ship for tanking and before injection due to the fuel's high viscosity. The heat for fuel heating is often provided by waste heat recovery boilers located in the exhaust ducting of the engine, which produce the steam required for fuel heating. Provided the heavy fuel system is kept warm and circulating, engines can be started and stopped on heavy fuel.
Large and medium marine engines are started with compressed air directly applied to the pistons. Air is applied to cylinders to start the engine forwards or backwards because they are normally directly connected to the propeller without clutch or gearbox, and to provide reverse propulsion either the engine must be run backwards or the ship will utilise an adjustable propeller. At least three cylinders are required with two-stroke engines and at least six cylinders with four-stroke engines to provide torque every 120 degrees.
Companies such as MAN B&W Diesel, (formerly Burmeister & Wain) and Wärtsilä (which acquired Sulzer Diesel) design such large low speed engines. They are unusually narrow and tall due to the addition of a crosshead bearing. As of 2007, the 14 cylinder Wärtsilä-Sulzer 14RTFLEX96-C turbocharged two-stroke diesel engine built by Wärtsilä licensee Doosan in Korea is the most powerful diesel engine put into service, with a cylinder bore of 960 mm (37.8 in) delivering 114,800 hp (85.6 MW). It was put into service in September 2006, aboard the world's largest container ship Emma Maersk which belongs to the A.P. Moller-Maersk Group. Typical bore size for low speed engines ranges from approximately 35 to 98 cm (14 to 39 in). As of 2008, all produced low speed engines with crosshead bearings are in-line configurations; no Vee versions have been produced.